Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hadoop Beginner's Guide
  • Toc
  • feedback
Hadoop Beginner's Guide

Hadoop Beginner's Guide

3.7 (13)
close
Hadoop Beginner's Guide

Hadoop Beginner's Guide

3.7 (13)

Overview of this book

Data is arriving faster than you can process it and the overall volumes keep growing at a rate that keeps you awake at night. Hadoop can help you tame the data beast. Effective use of Hadoop however requires a mixture of programming, design, and system administration skills."Hadoop Beginner's Guide" removes the mystery from Hadoop, presenting Hadoop and related technologies with a focus on building working systems and getting the job done, using cloud services to do so when it makes sense. From basic concepts and initial setup through developing applications and keeping the system running as the data grows, the book gives the understanding needed to effectively use Hadoop to solve real world problems.Starting with the basics of installing and configuring Hadoop, the book explains how to develop applications, maintain the system, and how to use additional products to integrate with other systems.While learning different ways to develop applications to run on Hadoop the book also covers tools such as Hive, Sqoop, and Flume that show how Hadoop can be integrated with relational databases and log collection.In addition to examples on Hadoop clusters on Ubuntu uses of cloud services such as Amazon, EC2 and Elastic MapReduce are covered.
Table of Contents (19 chapters)
close
Hadoop Beginner's Guide
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Using language-independent data structures


A criticism often leveled at Hadoop, and which the community has been working hard to address, is that it is very Java-centric. It may appear strange to accuse a project fully implemented in Java of being Java-centric, but the consideration is from a client's perspective.

We have shown how Hadoop Streaming allows the use of scripting languages to implement map and reduce tasks and how Pipes provides similar mechanisms for C++. However, one area that does remain Java-only is the nature of the input formats supported by Hadoop MapReduce. The most efficient format is SequenceFile, a binary splittable container that supports compression. However, SequenceFiles have only a Java API; they cannot be written or read in any other language.

We could have an external process creating data to be ingested into Hadoop for MapReduce processing, and the best way we could do this is either have it simply as an output of text type or do some preprocessing to translate...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete