Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hadoop Beginner's Guide
  • Toc
  • feedback
Hadoop Beginner's Guide

Hadoop Beginner's Guide

3.7 (13)
close
Hadoop Beginner's Guide

Hadoop Beginner's Guide

3.7 (13)

Overview of this book

Data is arriving faster than you can process it and the overall volumes keep growing at a rate that keeps you awake at night. Hadoop can help you tame the data beast. Effective use of Hadoop however requires a mixture of programming, design, and system administration skills."Hadoop Beginner's Guide" removes the mystery from Hadoop, presenting Hadoop and related technologies with a focus on building working systems and getting the job done, using cloud services to do so when it makes sense. From basic concepts and initial setup through developing applications and keeping the system running as the data grows, the book gives the understanding needed to effectively use Hadoop to solve real world problems.Starting with the basics of installing and configuring Hadoop, the book explains how to develop applications, maintain the system, and how to use additional products to integrate with other systems.While learning different ways to develop applications to run on Hadoop the book also covers tools such as Hive, Sqoop, and Flume that show how Hadoop can be integrated with relational databases and log collection.In addition to examples on Hadoop clusters on Ubuntu uses of cloud services such as Amazon, EC2 and Elastic MapReduce are covered.
Table of Contents (19 chapters)
close
Hadoop Beginner's Guide
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Joins


Few problems use a single set of data. In many cases, there are easy ways to obviate the need to try and process numerous discrete yet related data sets within the MapReduce framework.

The analogy here is, of course, to the concept of join in a relational database. It is very natural to segment data into numerous tables and then use SQL statements that join tables together to retrieve data from multiple sources. The canonical example is where a main table has only ID numbers for particular facts, and joins against other tables are used to extract data about the information referred to by the unique ID.

When this is a bad idea

It is possible to implement joins in MapReduce. Indeed, as we'll see, the problem is less about the ability to do it and more the choice of which of many potential strategies to employ.

However, MapReduce joins are often difficult to write and easy to make inefficient. Work with Hadoop for any length of time, and you will come across a situation where you need to...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete