The introduction to data modeling we provided in Chapter 5, Gathering and Loading Data in Python, gave us an understanding of relational databases and fundamental statistics that can be performed against structured data. In those examples, we learned about the relationships of data and how data can be modeled from the perspective of the data producer.Data producers are responsible for storing data in a structure to ensure the data's integrity is consistent. In the previous chapter, we also learned how anEntity Relationship Diagram (ERD)can be used to define the relationships between tables. In this chapter, we will apply these same concepts with the data consumer in mind. As a result, we will focus on creating new relationships with data, making it easier for analysis.This concept was an evolution in reporting and spawned a new industry commonly known as Business Intelligence (BI) and Analytics.

Practical Data Analysis Using Jupyter Notebook
By :

Practical Data Analysis Using Jupyter Notebook
By:
Overview of this book
Data literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data.
After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps.
Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries.
By the end of this book, you'll have gained the practical skills you need to analyze data with confidence.
Table of Contents (18 chapters)
Preface
Section 1: Data Analysis Essentials
Fundamentals of Data Analysis
Overview of Python and Installing Jupyter Notebook
Getting Started with NumPy
Creating Your First pandas DataFrame
Gathering and Loading Data in Python
Section 2: Solutions for Data Discovery
Visualizing and Working with Time Series Data
Exploring, Cleaning, Refining, and Blending Datasets
Understanding Joins, Relationships, and Aggregates
Plotting, Visualization, and Storytelling
Section 3: Working with Unstructured Big Data
Exploring Text Data and Unstructured Data
Practical Sentiment Analysis
Bringing It All Together
Works Cited
Other Books You May Enjoy
How would like to rate this book
Customer Reviews