Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Practical Data Analysis Using Jupyter Notebook
  • Toc
  • feedback
Practical Data Analysis Using Jupyter Notebook

Practical Data Analysis Using Jupyter Notebook

By : Marc Wintjen
3.9 (9)
close
Practical Data Analysis Using Jupyter Notebook

Practical Data Analysis Using Jupyter Notebook

3.9 (9)
By: Marc Wintjen

Overview of this book

Data literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data. After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps. Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries. By the end of this book, you'll have gained the practical skills you need to analyze data with confidence.
Table of Contents (18 chapters)
close
1
Section 1: Data Analysis Essentials
7
Section 2: Solutions for Data Discovery
12
Section 3: Working with Unstructured Big Data
16
Works Cited

Why sentiment analysis is important

Today, we are all living in a digital age where data is entangled in our daily lives. However, since most of this data is unstructured and the volume of it is large, it requires statistical libraries and machine learning (ML) to apply it to technology solutions. The NLTK libraries serve as a framework for us to work with unstructured data, and sentiment analysis serves as a practical use case in NLP. Sentiment analysis, or opinion mining, is a type of supervised ML that requires a training dataset to accurately predict an input sentence, phrase, headline, or even tweet is positive, negative, or neutral. Once the model has been trained, you can pass unstructured data into it, like a function, and it will return a value between negative one and positive one. The number will output decimals, and the closer it is to an integer, the more confident the model's accuracy will be. Sentiment analysis is an evolving science, so our focus will be on...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete