Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Fundamentals of Analytics Engineering
  • Table Of Contents Toc
  • Feedback & Rating feedback
Fundamentals of Analytics Engineering

Fundamentals of Analytics Engineering

By : Dumky De Wilde, Kassapian, Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Taís Laurindo Pereira
4.7 (3)
close
close
Fundamentals of Analytics Engineering

Fundamentals of Analytics Engineering

4.7 (3)
By: Dumky De Wilde, Kassapian, Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Taís Laurindo Pereira

Overview of this book

Written by a team of 7 industry experts, Fundamentals of Analytics Engineering will introduce you to everything from foundational concepts to advanced skills to get started as an analytics engineer. After conquering data ingestion and techniques for data quality and scalability, you’ll learn about techniques such as data cleaning transformation, data modeling, SQL query optimization and reuse, and serving data across different platforms. Armed with this knowledge, you will implement a simple data platform from ingestion to visualization, using tools like Airbyte Cloud, Google BigQuery, dbt, and Tableau. You’ll also get to grips with strategies for data integrity with a focus on data quality and observability, along with collaborative coding practices like version control with Git. You’ll learn about advanced principles like CI/CD, automating workflows, gathering, scoping, and documenting business requirements, as well as data governance. By the end of this book, you’ll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.
Table of Contents (23 chapters)
close
close
1
Prologue
Free Chapter
2
Part 1:Introduction to Analytics Engineering
5
Part 2: Building Data Pipelines
11
Part 3: Hands-On Guide to Building a Data Platform
13
Part 4: DataOps
17
Part 5: Data Strategy
21
Index

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Notice how the next CTE, called employees, selects from the raw_source CTE.”

A block of code is set as follows:

def add_numbers(a, b):
    c = a + b
    return c

Any command-line input or output is written as follows:

on-run-end: "{{ dbt_project_evaluator.print_dbt_project_evaluator_issues() }}"

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “A common application for the ETL process is when organizations have strict requirements regarding Personal Identifiable Information (PII).”

Tips or important notes

Appear like this.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY