Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Fundamentals of Analytics Engineering
  • Table Of Contents Toc
  • Feedback & Rating feedback
Fundamentals of Analytics Engineering

Fundamentals of Analytics Engineering

By : Dumky De Wilde, Kassapian, Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Taís Laurindo Pereira
4.7 (3)
close
close
Fundamentals of Analytics Engineering

Fundamentals of Analytics Engineering

4.7 (3)
By: Dumky De Wilde, Kassapian, Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Taís Laurindo Pereira

Overview of this book

Written by a team of 7 industry experts, Fundamentals of Analytics Engineering will introduce you to everything from foundational concepts to advanced skills to get started as an analytics engineer. After conquering data ingestion and techniques for data quality and scalability, you’ll learn about techniques such as data cleaning transformation, data modeling, SQL query optimization and reuse, and serving data across different platforms. Armed with this knowledge, you will implement a simple data platform from ingestion to visualization, using tools like Airbyte Cloud, Google BigQuery, dbt, and Tableau. You’ll also get to grips with strategies for data integrity with a focus on data quality and observability, along with collaborative coding practices like version control with Git. You’ll learn about advanced principles like CI/CD, automating workflows, gathering, scoping, and documenting business requirements, as well as data governance. By the end of this book, you’ll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.
Table of Contents (23 chapters)
close
close
1
Prologue
Free Chapter
2
Part 1:Introduction to Analytics Engineering
5
Part 2: Building Data Pipelines
11
Part 3: Hands-On Guide to Building a Data Platform
13
Part 4: DataOps
17
Part 5: Data Strategy
21
Index

Choosing a data model

Modelers should be familiar with these modeling techniques and apply them when appropriate. In practice, most systems have mixed data models, and finding a pure data model that adheres to all the recommended characteristics explored in this chapter is nearly impossible.

As a general guideline, normalization techniques are suitable for transactional systems focused on capturing events, sometimes involving millions of rows in a short period. The strength of the 3NF is that the updates and inserts of these transactions impact the database in only one place.

The dimensional model or star schema is more suitable for analytical purposes, such as drilling down on data, generating reports, and performing aggregations or calculations. This modeling technique is integrated into some business intelligence tools, making it easier for users to understand and query directly for data extraction and create reports or dashboards.

Highly complex systems with multiple sources...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY