-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating

AI-Assisted Programming for Web and Machine Learning
By :

In this context, we will utilize CNNs to tackle the object recognition task using the CIFAR-10 dataset. CNNs are particularly effective for image-related problems due to their ability to automatically learn hierarchical features from raw pixel data. By training a CNN model on the CIFAR-10 dataset, we aim to develop a robust system capable of accurately classifying objects into one of the ten predefined categories. This model can be applied in various domains, such as image-based search engines, automated surveillance systems, and quality control in manufacturing.
The CIFAR-10 dataset comprises 60,000 color images, divided into 10 classes, with 6,000 images per class. Each image has dimensions of 32x32 pixels and is represented in RGB format. The dataset is split into a training set of 50,000 images and a test set of 10,000 images.
Features in the dataset include: