Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python for Algorithmic Trading Cookbook
  • Toc
  • feedback
Python for Algorithmic Trading Cookbook

Python for Algorithmic Trading Cookbook

By : Jason Strimpel
4.2 (19)
close
Python for Algorithmic Trading Cookbook

Python for Algorithmic Trading Cookbook

4.2 (19)
By: Jason Strimpel

Overview of this book

Discover how Python has made algorithmic trading accessible to non-professionals with unparalleled expertise and practical insights from Jason Strimpel, founder of PyQuant News and a seasoned professional with global experience in trading and risk management. This book guides you through from the basics of quantitative finance and data acquisition to advanced stages of backtesting and live trading. Detailed recipes will help you leverage the cutting-edge OpenBB SDK to gather freely available data for stocks, options, and futures, and build your own research environment using lightning-fast storage techniques like SQLite, HDF5, and ArcticDB. This book shows you how to use SciPy and statsmodels to identify alpha factors and hedge risk, and construct momentum and mean-reversion factors. You’ll optimize strategy parameters with walk-forward optimization using VectorBT and construct a production-ready backtest using Zipline Reloaded. Implementing all that you’ve learned, you’ll set up and deploy your algorithmic trading strategies in a live trading environment using the Interactive Brokers API, allowing you to stream tick-level data, submit orders, and retrieve portfolio details. By the end of this algorithmic trading book, you'll not only have grasped the essential concepts but also the practical skills needed to implement and execute sophisticated trading strategies using Python.
Table of Contents (16 chapters)
close

Resampling data for different time frames

Two types of resampling are upsampling, where data is converted into a higher frequency (such as daily data to hourly data), and downsampling, where data is converted into a lower frequency (such as daily data to monthly data). In financial data analysis, resampling can help in various ways. For instance, if you have daily stock prices, you can resample this data to calculate monthly or yearly average prices, which can be useful for long-term trend analysis. A common use case is when aligning trade and quote data. There are a lot more quotes than trades – often an order of magnitude more – and we may need to align the open, high, low, and closing quote prices to the open, high, low, and closing trade data. Since the quotes and trades will have different timestamps, resampling to a 1-second resolution is a great way to align these disparate data sources.

How to do it…

We’ll work on resampling stock price data...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete