Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python for Algorithmic Trading Cookbook
  • Toc
  • feedback
Python for Algorithmic Trading Cookbook

Python for Algorithmic Trading Cookbook

By : Jason Strimpel
4.2 (19)
close
Python for Algorithmic Trading Cookbook

Python for Algorithmic Trading Cookbook

4.2 (19)
By: Jason Strimpel

Overview of this book

Discover how Python has made algorithmic trading accessible to non-professionals with unparalleled expertise and practical insights from Jason Strimpel, founder of PyQuant News and a seasoned professional with global experience in trading and risk management. This book guides you through from the basics of quantitative finance and data acquisition to advanced stages of backtesting and live trading. Detailed recipes will help you leverage the cutting-edge OpenBB SDK to gather freely available data for stocks, options, and futures, and build your own research environment using lightning-fast storage techniques like SQLite, HDF5, and ArcticDB. This book shows you how to use SciPy and statsmodels to identify alpha factors and hedge risk, and construct momentum and mean-reversion factors. You’ll optimize strategy parameters with walk-forward optimization using VectorBT and construct a production-ready backtest using Zipline Reloaded. Implementing all that you’ve learned, you’ll set up and deploy your algorithmic trading strategies in a live trading environment using the Interactive Brokers API, allowing you to stream tick-level data, submit orders, and retrieve portfolio details. By the end of this algorithmic trading book, you'll not only have grasped the essential concepts but also the practical skills needed to implement and execute sophisticated trading strategies using Python.
Table of Contents (16 chapters)
close

Deploying a monthly factor portfolio strategy

We’ll now integrate the momentum factor we built in Chapter 5, Build Alpha Factors for Stock Portfolios, into our trading app. The app is designed to download and process premium U.S. equities data encompassing a comprehensive universe of approximately 20,000 stocks. The advantage of using the premium data is that it lets us build factor portfolios that include the entire universe of U.S.-traded equities.

The trading app is designed to be run on a periodic rebalancing schedule after market hours, typically monthly. Each time it runs, it acquires the latest price data for the entire stock universe. It then computes the momentum factor for these stocks. Based on this computation, the app identifies the top stocks exhibiting the strongest momentum and the bottom stocks showing the weakest momentum. The trading strategy involves going long on the top stocks and short on the bottom stocks.

Our trading app can execute orders that...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete