Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Engineering Data Mesh in Azure Cloud
  • Table Of Contents Toc
  • Feedback & Rating feedback
Engineering Data Mesh in Azure Cloud

Engineering Data Mesh in Azure Cloud

By : Deswandikar
4.5 (6)
close
close
Engineering Data Mesh in Azure Cloud

Engineering Data Mesh in Azure Cloud

4.5 (6)
By: Deswandikar

Overview of this book

Decentralizing data and centralizing governance are practical, scalable, and modern approaches to data analytics. However, implementing a data mesh can feel like changing the engine of a moving car. Most organizations struggle to start and get caught up in the concept of data domains, spending months trying to organize domains. This is where Engineering Data Mesh in Azure Cloud can help. The book starts by assessing your existing framework before helping you architect a practical design. As you progress, you’ll focus on the Microsoft Cloud Adoption Framework for Azure and the cloud-scale analytics framework, which will help you quickly set up a landing zone for your data mesh in the cloud. The book also resolves common challenges related to the adoption and implementation of a data mesh faced by real customers. It touches on the concepts of data contracts and helps you build practical data contracts that work for your organization. The last part of the book covers some common architecture patterns used for modern analytics frameworks such as artificial intelligence (AI). By the end of this book, you’ll be able to transform existing analytics frameworks into a streamlined data mesh using Microsoft Azure, thereby navigating challenges and implementing advanced architecture patterns for modern analytics workloads.
Table of Contents (23 chapters)
close
close
Free Chapter
1
Part 1: Rolling Out the Data Mesh in the Azure Cloud
9
Part 2: Practical Challenges of Implementing a Data Mesh
16
Part 3: Popular Data Product Architectures
17
Chapter 14: Advanced Analytics Using Azure Machine Learning, Databricks, and the Lakehouse Architecture
19
Chapter 16: Event-Driven Analytics Using Azure Event Hubs, Azure Stream Analytics, and Azure Machine Learning
chevron up

Components

Let’s look at the components of this architecture in greater detail.

Source data

Clickstream data can be collected using multiple software development kits (SDKs). These are typically JavaScript scripts that are embedded in the web pages that transmit click data to an API.

IoT data can be collected using a network of sensors connected to a gateway. The gateway can call an API in the analytical system (IoT Hub) to push the data.

Azure Event Hubs

Azure Event Hubs is a data streaming service that can scale to millions of messages per second. It is the preferred event ingestion service in Azure. It provides message/events queues to ingest and temporarily store messages/events from a producer until an event consumer pulls the event off the queue for processing. It also maintains a schema registry that the producer and consumer can refer to maintain interoperability. Event Hubs can be configured and scaled in many ways. For more details on Azure Event Hubs...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY