Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Engineering Data Mesh in Azure Cloud
  • Table Of Contents Toc
  • Feedback & Rating feedback
Engineering Data Mesh in Azure Cloud

Engineering Data Mesh in Azure Cloud

By : Deswandikar
4.5 (6)
close
close
Engineering Data Mesh in Azure Cloud

Engineering Data Mesh in Azure Cloud

4.5 (6)
By: Deswandikar

Overview of this book

Decentralizing data and centralizing governance are practical, scalable, and modern approaches to data analytics. However, implementing a data mesh can feel like changing the engine of a moving car. Most organizations struggle to start and get caught up in the concept of data domains, spending months trying to organize domains. This is where Engineering Data Mesh in Azure Cloud can help. The book starts by assessing your existing framework before helping you architect a practical design. As you progress, you’ll focus on the Microsoft Cloud Adoption Framework for Azure and the cloud-scale analytics framework, which will help you quickly set up a landing zone for your data mesh in the cloud. The book also resolves common challenges related to the adoption and implementation of a data mesh faced by real customers. It touches on the concepts of data contracts and helps you build practical data contracts that work for your organization. The last part of the book covers some common architecture patterns used for modern analytics frameworks such as artificial intelligence (AI). By the end of this book, you’ll be able to transform existing analytics frameworks into a streamlined data mesh using Microsoft Azure, thereby navigating challenges and implementing advanced architecture patterns for modern analytics workloads.
Table of Contents (23 chapters)
close
close
Free Chapter
1
Part 1: Rolling Out the Data Mesh in the Azure Cloud
9
Part 2: Practical Challenges of Implementing a Data Mesh
16
Part 3: Popular Data Product Architectures
17
Chapter 14: Advanced Analytics Using Azure Machine Learning, Databricks, and the Lakehouse Architecture
19
Chapter 16: Event-Driven Analytics Using Azure Event Hubs, Azure Stream Analytics, and Azure Machine Learning

Data observability

The health of your network defines the health of your infrastructure. A large virtual machine with great specifications to crunch numbers at blazing speed is rendered useless if the network is not working. Similarly, data pipelines are the backbone of a healthy data mesh. Without timely and accurate data, the best analytical system is not useful to the business.

Data quality, data contracts, and master data management are some of the key tenets of the quality and accuracy of data. Along with quality and accuracy, we also need to monitor the movement of data through data lineage in Microsoft Purview as well as data pipeline health through data mesh monitoring.

Throughout multiple chapters in this book, we have looked at all of these aspects of data. As part of data mesh monitoring, you need to bring all of these different data observability metrics together onto a single pane of glass.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY