Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Extending Excel with Python and R
  • Table Of Contents Toc
  • Feedback & Rating feedback
Extending Excel with Python and R

Extending Excel with Python and R

By : Steven Sanderson, Kun
5 (5)
close
close
Extending Excel with Python and R

Extending Excel with Python and R

5 (5)
By: Steven Sanderson, Kun

Overview of this book

– Extending Excel with Python and R is a game changer resource written by experts Steven Sanderson, the author of the healthyverse suite of R packages, and David Kun, co-founder of Functional Analytics. – This comprehensive guide transforms the way you work with spreadsheet-based data by integrating Python and R with Excel to automate tasks, execute statistical analysis, and create powerful visualizations. – Working through the chapters, you’ll find out how to perform exploratory data analysis, time series analysis, and even integrate APIs for maximum efficiency. – Both beginners and experts will get everything you need to unlock Excel's full potential and take your data analysis skills to the next level. – By the end of this book, you’ll be able to import data from Excel, manipulate it in R or Python, and perform the data analysis tasks in your preferred framework while pushing the results back to Excel for sharing with others as needed.
Table of Contents (20 chapters)
close
close
1
Part 1:The Basics – Reading and Writing Excel Files from R and Python
6
Part 2: Making It Pretty – Formatting, Graphs, and More
10
Part 3: EDA, Statistical Analysis, and Time Series Analysis
14
Part 4: The Other Way Around – Calling R and Python from Excel
16
Part 5: Data Analysis and Visualization with R and Python for Excel Data – A Case Study

Reading Excel Spreadsheets

In the deep and wide landscape of data analysis, Excel stands tall and by your side as a trusted warrior, simplifying the process of organizing, calculating, and presenting information. Its intuitive interface and widespread usage have cemented its position as a staple in the business world. However, as the volume and complexity of data continue to grow exponentially, Excel’s capabilities may start to feel constrained. It is precisely at this point that the worlds of Excel, R, and Python converge. Extending Excel with R and Python invites you to embark on a truly transformative journey. This trip will show you the power of these programming languages as they synergize with Excel, expanding its horizons and empowering you to conquer data challenges with ease. In this book, we will delve into how to integrate Excel with R and Python, uncovering the hidden potential that lies beneath the surface and enabling you to extract valuable insights, automate processes, and unleash the true power of data analysis.

Microsoft Excel came to market in 1985 and has remained a popular spreadsheet software choice. Excel was originally known as MultiPlan. Microsoft Excel and databases in general share some similarities in terms of organizing and managing data, although they serve different purposes. Excel is a spreadsheet program that allows users to store and manipulate data in a tabular format. It consists of rows and columns, where each cell can contain text, numbers, or formulas. Similarly, a database is a structured collection of data stored in tables, consisting of rows and columns.

Both Excel and databases provide a way to store and retrieve data. In Excel, you can enter data, perform calculations, and create charts and graphs. Similarly, databases store and manage large amounts of structured data and enable querying, sorting, and filtering. Excel and databases also support the concept of relationships. In Excel, you can link cells or ranges across different sheets, creating connections between data. Databases use relationships to link tables based on common fields, allowing you to retrieve related data from multiple tables.

This chapter aims to familiarize you with reading Excel files into the R environment and performing some manipulation on them. Specifically, in this chapter, we’re going to cover the following main topics:

  • R packages for Excel manipulation
  • Reading Excel files to manipulate with R
  • Reading multiple Excel sheets with a custom R function
  • Python packages for Excel manipulation
  • Opening an Excel sheet from Python and reading the data
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY