Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Applied Machine Learning for Healthcare and Life Sciences using AWS
  • Table Of Contents Toc
  • Feedback & Rating feedback
Applied Machine Learning for Healthcare and Life Sciences using AWS

Applied Machine Learning for Healthcare and Life Sciences using AWS

By : Ujjwal Ratan
4.9 (14)
close
close
Applied Machine Learning for Healthcare and Life Sciences using AWS

Applied Machine Learning for Healthcare and Life Sciences using AWS

4.9 (14)
By: Ujjwal Ratan

Overview of this book

While machine learning is not new, it's only now that we are beginning to uncover its true potential in the healthcare and life sciences industry. The availability of real-world datasets and access to better compute resources have helped researchers invent applications that utilize known AI techniques in every segment of this industry, such as providers, payers, drug discovery, and genomics. This book starts by summarizing the introductory concepts of machine learning and AWS machine learning services. You’ll then go through chapters dedicated to each segment of the healthcare and life sciences industry. Each of these chapters has three key purposes -- First, to introduce each segment of the industry, its challenges, and the applications of machine learning relevant to that segment. Second, to help you get to grips with the features of the services available in the AWS machine learning stack like Amazon SageMaker and Amazon Comprehend Medical. Third, to enable you to apply your new skills to create an ML-driven solution to solve problems particular to that segment. The concluding chapters outline future industry trends and applications. By the end of this book, you’ll be aware of key challenges faced in applying AI to healthcare and life sciences industry and learn how to address those challenges with confidence.
Table of Contents (19 chapters)
close
close
1
Part 1: Introduction to Machine Learning on AWS
Free Chapter
2
Chapter 1: Introducing Machine Learning and the AWS Machine Learning Stack
4
Part 2: Machine Learning Applications in the Healthcare Industry
9
Part 3: Machine Learning Applications in the Life Sciences Industry
14
Part 4: Challenges and the Future of AI in Healthcare and Life Sciences

Summary

In this chapter, we went into the details of how a new drug is tested for safety and efficacy before it can be launched in the market. We understood the various phases in the clinical trial workflow and looked at how regulatory agencies make policies to ensure the safety of patients and trial participants. We understood the importance of PV in the overall monitoring of the drug and looked into the details of real-world data. Additionally, we learned about how ML can optimize the clinical trial workflow and make it safer and more efficient. Finally, we learned about the new features of SageMaker called SageMaker Pipelines and Model Registry, which can aid in these processes. We also built a sample workflow to cluster adverse event data about drugs.

In Chapter 10, Utilizing Machine Learning in the Pharmaceutical Supply Chain, we will look at how pharma manufacturers are utilizing ML to maximize the return on multi-year investments and launching a new drug on the market.

...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY