Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Applied Machine Learning for Healthcare and Life Sciences using AWS
  • Table Of Contents Toc
  • Feedback & Rating feedback
Applied Machine Learning for Healthcare and Life Sciences using AWS

Applied Machine Learning for Healthcare and Life Sciences using AWS

By : Ujjwal Ratan
4.9 (14)
close
close
Applied Machine Learning for Healthcare and Life Sciences using AWS

Applied Machine Learning for Healthcare and Life Sciences using AWS

4.9 (14)
By: Ujjwal Ratan

Overview of this book

While machine learning is not new, it's only now that we are beginning to uncover its true potential in the healthcare and life sciences industry. The availability of real-world datasets and access to better compute resources have helped researchers invent applications that utilize known AI techniques in every segment of this industry, such as providers, payers, drug discovery, and genomics. This book starts by summarizing the introductory concepts of machine learning and AWS machine learning services. You’ll then go through chapters dedicated to each segment of the healthcare and life sciences industry. Each of these chapters has three key purposes -- First, to introduce each segment of the industry, its challenges, and the applications of machine learning relevant to that segment. Second, to help you get to grips with the features of the services available in the AWS machine learning stack like Amazon SageMaker and Amazon Comprehend Medical. Third, to enable you to apply your new skills to create an ML-driven solution to solve problems particular to that segment. The concluding chapters outline future industry trends and applications. By the end of this book, you’ll be aware of key challenges faced in applying AI to healthcare and life sciences industry and learn how to address those challenges with confidence.
Table of Contents (19 chapters)
close
close
1
Part 1: Introduction to Machine Learning on AWS
Free Chapter
2
Chapter 1: Introducing Machine Learning and the AWS Machine Learning Stack
4
Part 2: Machine Learning Applications in the Healthcare Industry
9
Part 3: Machine Learning Applications in the Life Sciences Industry
14
Part 4: Challenges and the Future of AI in Healthcare and Life Sciences

Applying Machine Learning to Molecular Data

Molecular data contains information about the chemical structures of different molecules. Extrapolating this data for analysis helps us determine important properties of a chemical at a molecular level. These properties are key in the discovery of new therapies and drugs. For example, small molecules with specific atomic structures can combine with other molecules to form compounds. These compounds may then become compounds of interest or candidate compounds if they are beneficial in treating diseases. This is done by looking at the interaction of the compound with a protein or gene involved in a disease and understanding how this interaction affects the underlying protein or gene. If the interaction helps to modulate the function or behavior of the gene or the protein, we can say that we have found a biological target for our compound. This process, also known as target discovery, is a key step in discovering new drugs. In some cases, instead...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY