Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Applied Machine Learning for Healthcare and Life Sciences using AWS
  • Table Of Contents Toc
  • Feedback & Rating feedback
Applied Machine Learning for Healthcare and Life Sciences using AWS

Applied Machine Learning for Healthcare and Life Sciences using AWS

By : Ujjwal Ratan
4.9 (14)
close
close
Applied Machine Learning for Healthcare and Life Sciences using AWS

Applied Machine Learning for Healthcare and Life Sciences using AWS

4.9 (14)
By: Ujjwal Ratan

Overview of this book

While machine learning is not new, it's only now that we are beginning to uncover its true potential in the healthcare and life sciences industry. The availability of real-world datasets and access to better compute resources have helped researchers invent applications that utilize known AI techniques in every segment of this industry, such as providers, payers, drug discovery, and genomics. This book starts by summarizing the introductory concepts of machine learning and AWS machine learning services. You’ll then go through chapters dedicated to each segment of the healthcare and life sciences industry. Each of these chapters has three key purposes -- First, to introduce each segment of the industry, its challenges, and the applications of machine learning relevant to that segment. Second, to help you get to grips with the features of the services available in the AWS machine learning stack like Amazon SageMaker and Amazon Comprehend Medical. Third, to enable you to apply your new skills to create an ML-driven solution to solve problems particular to that segment. The concluding chapters outline future industry trends and applications. By the end of this book, you’ll be aware of key challenges faced in applying AI to healthcare and life sciences industry and learn how to address those challenges with confidence.
Table of Contents (19 chapters)
close
close
1
Part 1: Introduction to Machine Learning on AWS
In Progress | 0 / 1 sections completed | 0%
Free Chapter
2
Chapter 1: Introducing Machine Learning and the AWS Machine Learning Stack
In Progress | 0 / 5 sections completed | 0%
4
Part 2: Machine Learning Applications in the Healthcare Industry
In Progress | 0 / 1 sections completed | 0%
9
Part 3: Machine Learning Applications in the Life Sciences Industry
In Progress | 0 / 1 sections completed | 0%
14
Part 4: Challenges and the Future of AI in Healthcare and Life Sciences
In Progress | 0 / 1 sections completed | 0%
17
Index
In Progress | 0 / 2 sections completed | 0%

Understanding molecular data

Having a good understanding of molecular properties and structures is extremely critical to determine how they react with each other. These reactions lead to the discovery of new molecules that lead to drug development. Pharmacology is the branch of science that studies such reactions and their impact on the body. Pharmacologists do this by reviewing molecular data stored in a variety of formats. At a very high level, molecules can be divided into two categories, small and large molecules. The distinction between them is not just because of their size. Let’s look at them in more detail.

Small molecules

Small molecules have been the basis of drug development for a very long time. They weigh less than 900 Dalton (Da) (1 Da is equal to 1.66053904x10^-24 grams) and account for more than 90% of drugs on the market today. Drugs based on small molecules are mostly developed through chemical synthesis. Due to their small size, they are easily absorbed...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY