Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Azure Machine Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Azure Machine Learning

Mastering Azure Machine Learning

By : Körner, Alsdorf
4.5 (15)
close
close
Mastering Azure Machine Learning

Mastering Azure Machine Learning

4.5 (15)
By: Körner, Alsdorf

Overview of this book

Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps. The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning. The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets. By the end of this book, you’ll be able to combine all the steps you’ve learned by building an MLOps pipeline.
Table of Contents (23 chapters)
close
close
1
Section 1: Introduction to Azure Machine Learning
5
Section 2: Data Ingestion, Preparation, Feature Engineering, and Pipelining
11
Section 3: The Training and Optimization of Machine Learning Models
17
Section 4: Machine Learning Model Deployment and Operations

Summary

In this chapter, we looked at how to prepare our features through feature engineering and how to prepare our labels through labeling.

In the first section, we learned that feature engineering includes creating new and missing features, transforming existing features, extracting features from a high-dimensional dataset, and using methods to select the most predictive feature for ML training.

In the second section, we learned that labeling is essential and tedious. Therefore, tooling such as Azure Machine Learning data labeling can be a blessing to alleviate this time-consuming task.

The key takeaway from this chapter is that creating, transforming, and selecting predictive features has the biggest impact on the quality of the ML model. No other step in the ML pipeline will have more influence on its outcome.

To pull off quality feature engineering, you must have intimate knowledge of the domain (or you must know someone with that knowledge) and a clear grasp of...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY