Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Azure Machine Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Azure Machine Learning

Mastering Azure Machine Learning

By : Körner, Alsdorf
4.5 (15)
close
close
Mastering Azure Machine Learning

Mastering Azure Machine Learning

4.5 (15)
By: Körner, Alsdorf

Overview of this book

Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps. The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning. The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets. By the end of this book, you’ll be able to combine all the steps you’ve learned by building an MLOps pipeline.
Table of Contents (23 chapters)
close
close
1
Section 1: Introduction to Azure Machine Learning
5
Section 2: Data Ingestion, Preparation, Feature Engineering, and Pipelining
11
Section 3: The Training and Optimization of Machine Learning Models
17
Section 4: Machine Learning Model Deployment and Operations

Combining content and ratings in hybrid recommendation engines

Instead of seeing rating-based recommenders as a successor to content-based recommenders, you should consider them as a different recommender after having acquired enough user-item interaction data to provide rating-only recommendations. In most practical cases, a recommendation engine will exist for both approaches – either as two distinct algorithms or a single hybrid model. In this section, we will look into training such a hybrid model.

To build a state-of-the-art recommender using the Matchbox recommender, open Azure Machine Learning designer and add the building blocks for the Matchbox recommender to the canvas, as shown in the following diagram. As we can see, the recommender can now take ratings and user and item features as input to create a hybrid recommendation model:

Figure 13.9 – The Matchbox recommender in Azure Machine Learning designer

In order to configure the Matchbox...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY