Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with PyTorch and Scikit-Learn
  • Toc
  • feedback
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

By : Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
4.4 (95)
close
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

4.4 (95)
By: Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Overview of this book

Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (22 chapters)
close
20
Other Books You May Enjoy
21
Index

Fine-tuning a BERT model in PyTorch

Now that we have introduced and discussed all the necessary concepts and the theory behind the original transformer and popular transformer-based models, it’s time to take a look at the more practical part! In this section, you will learn how to fine-tune a BERT model for sentiment classification in PyTorch.

Note that although there are many other transformer-based models to choose from, BERT provides a nice balance between model popularity and having a manageable model size so that it can be fine-tuned on a single GPU. Note also that pre-training a BERT from scratch is painful and quite unnecessary considering the availability of the transformers Python package provided by Hugging Face, which includes a bunch of pre-trained models that are ready for fine-tuning.

In the following sections, you’ll see how to prepare and tokenize the IMDb movie review dataset and fine-tune the distilled BERT model to perform sentiment classification...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete