Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with PyTorch and Scikit-Learn
  • Toc
  • feedback
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

By : Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
4.4 (95)
close
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

4.4 (95)
By: Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Overview of this book

Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (22 chapters)
close
20
Other Books You May Enjoy
21
Index

To get the most out of this book

Ideally, you are already comfortable with programming in Python to follow along with the code examples we provide to both illustrate and apply various algorithms and models. To get the most out of this book, a firm grasp of mathematical notation will be helpful as well.

A common laptop or desktop computer should be sufficient for running most of the code in this book, and we provide instructions for your Python environment in the first chapter. Later chapters will introduce additional libraries and installation recommendations when the need arises.

A recent graphics processing unit (GPU) can accelerate the code runtimes in the later deep learning chapters. However, a GPU is not required, and we also provide instructions for using free cloud resources.

Download the example code files

All code examples are available for download through GitHub at https://github.com/rasbt/machine-learning-book. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

While we recommend using Jupyter Notebook for executing code interactively, all code examples are available in both a Python script (for example, ch02/ch02.py) and a Jupyter Notebook format (for example, ch02/ch02.ipynb). Furthermore, we recommend viewing the README.md file that accompanies each individual chapter for additional information and updates

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781801819312_ColorImages.pdf. In addition, lower resolution color images are embedded in the code notebooks of this book that come bundled with the example code files.

Conventions

There are a number of text conventions used throughout this book.

Here are some examples of these styles and an explanation of their meaning. Code words in text are shown as follows: “And already installed packages can be updated via the --upgrade flag.”

A block of code is set as follows:

def __init__(self, eta=0.01, n_iter=50, random_state=1):
    self.eta = eta
    self.n_iter = n_iter
    self.random_state = random_state

Any input in the Python interpreter is written as follows (notice the >>> symbol). The expected output will be shown without the >>> symbol:

>>> v1 = np.array([1, 2, 3])
>>> v2 = 0.5 * v1
>>> np.arccos(v1.dot(v2) / (np.linalg.norm(v1) *
...           np.linalg.norm(v2)))
0.0

Any command-line input or output is written as follows:

pip install gym==0.20

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: “Clicking the Next button moves you to the next screen.”

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete