
Extending Power BI with Python and R
By :

In the previous section, you saw all the ways you can interact with your data in Power BI via R or Python scripts. Beyond knowing how and where to inject your code into Power BI, it is very important to know how your code will interact with that data. It's here that we see a big difference between the effect of scripts injected via Power Query Editor and scripts used in visuals:
Tip
Thanks to the interactive nature of R and Python script visuals due to cross-filtering, it is possible to inject code useful to extract real-time insights from data, but also from external sources (you'll see how in Chapter 9, Calling External APIs to Enrich Your Data). The important thing to keep in mind is that, as previously stated, it is then only possible to visualize such information, or at the most to write it to external repositories (as you will see in Chapter 7, Logging Data from Power BI to External Sources).
In the final section of this chapter, let's look at the limitations of using R and Python when it comes to various Power BI products.