Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Extending Power BI with Python and R
  • Table Of Contents Toc
  • Feedback & Rating feedback
Extending Power BI with Python and R

Extending Power BI with Python and R

By : Zavarella
4.7 (10)
close
close
Extending Power BI with Python and R

Extending Power BI with Python and R

4.7 (10)
By: Zavarella

Overview of this book

Python and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you’ll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R.
Table of Contents (22 chapters)
close
close
1
Section 1: Best Practices for Using R and Python in Power BI
5
Section 2: Data Ingestion and Transformation with R and Python in Power BI
11
Section 3: Data Enrichment with R and Python in Power BI
17
Section 3: Data Visualization with R in Power BI

Using trained models in Power Query

As you already saw in Chapter 4, Importing Unhandled Data Objects, you used to share objects that were the result of complex, time-consuming processing (thus also a machine learning model) in a serialized format specific to the language you were using. At that point, it was very simple to deserialize the file and get the model ready to be used in Power Query to predict the target variable of new observations. However, it is important to know the dependencies needed by the scoring function (which gets the new observations as input and returns the predictions), since they are closely related to how the training of the model took place. For this reason, we recommend the following:

Important Note

When you need to use a serialized machine learning model provided by a third party, make sure that whoever developed it also provides you with a working scoring function in order to avoid unnecessary headaches when predicting target values for unknown...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY