Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Learning with PyTorch Lightning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Learning with PyTorch Lightning

Deep Learning with PyTorch Lightning

By : Kunal Sawarkar, Dheeraj Arremsetty
4.3 (16)
close
close
Deep Learning with PyTorch Lightning

Deep Learning with PyTorch Lightning

4.3 (16)
By: Kunal Sawarkar, Dheeraj Arremsetty

Overview of this book

Building and implementing deep learning (DL) is becoming a key skill for those who want to be at the forefront of progress.But with so much information and complex study materials out there, getting started with DL can feel quite overwhelming. Written by an AI thought leader, Deep Learning with PyTorch Lightning helps researchers build their first DL models quickly and easily without getting stuck on the complexities. With its help, you’ll be able to maximize productivity for DL projects while ensuring full flexibility – from model formulation to implementation. Throughout this book, you’ll learn how to configure PyTorch Lightning on a cloud platform, understand the architectural components, and explore how they are configured to build various industry solutions. You’ll build a neural network architecture, deploy an application from scratch, and see how you can expand it based on your specific needs, beyond what the framework can provide. In the later chapters, you’ll also learn how to implement capabilities to build and train various models like Convolutional Neural Nets (CNN), Natural Language Processing (NLP), Time Series, Self-Supervised Learning, Semi-Supervised Learning, Generative Adversarial Network (GAN) using PyTorch Lightning. By the end of this book, you’ll be able to build and deploy DL models with confidence.
Table of Contents (15 chapters)
close
close
1
Section 1: Kickstarting with PyTorch Lightning
6
Section 2: Solving using PyTorch Lightning
11
Section 3: Advanced Topics

An image classifier using a pre-trained ResNet-50 architecture

ResNet-50 stands for Residual Network, which is a type of CNN architecture that was first published in a computer vision research paper entitled Deep Residual Learning for Image Recognition, by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, in 2015.

ResNet is currently the most popular architecture for image-related tasks. While it certainly works great on image classification problems (which we will see as follows), it works equally great as an encoder to learn image representations for more complex tasks such as Self-Supervised Learning. There are multiple variations of ResNet architecture, including ResNet-18, ResNet-34, ResNet-50, and ResNet-152 based on the number of deep layers it has.

The ResNet-50 architecture has 50 deep layers and is trained on the ImageNet dataset, which has 14 million images belonging to 1,000 different classes, including animals, cars, keyboards, mice, pens, and pencils. The...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY