Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Deep Learning with PyTorch Lightning
  • Toc
  • feedback
Deep Learning with PyTorch Lightning

Deep Learning with PyTorch Lightning

By : Kunal Sawarkar, Dheeraj Arremsetty
4.3 (16)
close
Deep Learning with PyTorch Lightning

Deep Learning with PyTorch Lightning

4.3 (16)
By: Kunal Sawarkar, Dheeraj Arremsetty

Overview of this book

Building and implementing deep learning (DL) is becoming a key skill for those who want to be at the forefront of progress.But with so much information and complex study materials out there, getting started with DL can feel quite overwhelming. Written by an AI thought leader, Deep Learning with PyTorch Lightning helps researchers build their first DL models quickly and easily without getting stuck on the complexities. With its help, you’ll be able to maximize productivity for DL projects while ensuring full flexibility – from model formulation to implementation. Throughout this book, you’ll learn how to configure PyTorch Lightning on a cloud platform, understand the architectural components, and explore how they are configured to build various industry solutions. You’ll build a neural network architecture, deploy an application from scratch, and see how you can expand it based on your specific needs, beyond what the framework can provide. In the later chapters, you’ll also learn how to implement capabilities to build and train various models like Convolutional Neural Nets (CNN), Natural Language Processing (NLP), Time Series, Self-Supervised Learning, Semi-Supervised Learning, Generative Adversarial Network (GAN) using PyTorch Lightning. By the end of this book, you’ll be able to build and deploy DL models with confidence.
Table of Contents (15 chapters)
close
1
Section 1: Kickstarting with PyTorch Lightning
6
Section 2: Solving using PyTorch Lightning
11
Section 3: Advanced Topics

What is Contrastive Learning?

The idea of understanding an image is to get an image of a particular kind (say a dog) and then we can recognize all other dogs by reasoning that they share the same representation or structure. For example, if you show a child who is not yet able to talk or understand language (say, less than 2 years old) a picture of a dog (or a real dog for that matter) and then give them a pack of cards with a collection of animals, which includes dogs, cats, elephants, and birds, and ask the child which picture is similar to the first one, it is most likely that the child could easily pick the card with a dog on it. And the child would be able to do so even without you explaining that this picture equals "dog" (in other words, without supplying any new labels).

You could say that a child learned to recognize all dogs in a single instance and with a single label! Wouldn't it be awesome if a machine could do that as well? That is exactly what contrastive...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete