Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering PyTorch
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering PyTorch

Mastering PyTorch

By : Ashish Ranjan Jha
4.8 (43)
close
close
Mastering PyTorch

Mastering PyTorch

4.8 (43)
By: Ashish Ranjan Jha

Overview of this book

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (20 chapters)
close
close
1
Section 1: PyTorch Overview
4
Section 2: Working with Advanced Neural Network Architectures
8
Section 3: Generative Models and Deep Reinforcement Learning
13
Section 4: PyTorch in Production Systems

Evolution of CNN architectures

CNNs have been in existence since 1989, when the first multilayered CNN, called ConvNet, was developed by Yann LeCun. This model could perform visual cognition tasks such as identifying handwritten digits. In 1998, LeCun developed an improved ConvNet model called LeNet. Due to its high accuracy in optical recognition tasks, LeNet was adopted for industrial use soon after its invention. Ever since, CNNs have been one of the most successful machine learning models, both in industry as well as academia. The following diagram shows a brief timeline of architectural developments in the lifetime of CNNs, starting from 1989 all the way to 2020:

Figure 3.5 – CNN architecture evolution – a broad picture

Figure 3.5 – CNN architecture evolution – a broad picture

As we can see, there is a significant gap between the years 1998 and 2012. This was primarily because there wasn't a dataset big and suitable enough to demonstrate the capabilities of CNNs, especially deep CNNs....

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY