Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering PyTorch
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering PyTorch

Mastering PyTorch

By : Ashish Ranjan Jha
4.8 (43)
close
close
Mastering PyTorch

Mastering PyTorch

4.8 (43)
By: Ashish Ranjan Jha

Overview of this book

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (20 chapters)
close
close
1
Section 1: PyTorch Overview
4
Section 2: Working with Advanced Neural Network Architectures
8
Section 3: Generative Models and Deep Reinforcement Learning
13
Section 4: PyTorch in Production Systems

Model serving in PyTorch

In this section, we will begin with building a simple PyTorch inference pipeline that can make predictions given some input data and the location of a previously trained and saved PyTorch model. We will proceed thereafter to place this inference pipeline on a model server that can listen to incoming data requests and return predictions. Finally, we will advance from developing a model server to creating a model microservice using Docker.

Creating a PyTorch model inference pipeline

We will be working on the handwritten digits image classification CNN model that we built in Chapter 1, Overview of Deep Learning Using PyTorch, on the MNIST dataset. Using this trained model, we will build an inference pipeline that shall be able to predict a digit between 0 to 9 for a given handwritten-digit input image.

For the process of building and training the model, please refer to the Training a neural network using PyTorch section of Chapter 1, Overview of Deep...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY