Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning Algorithms
  • Toc
  • feedback
Machine Learning Algorithms

Machine Learning Algorithms

close
Machine Learning Algorithms

Machine Learning Algorithms

Overview of this book

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight. This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture. By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.
Table of Contents (19 chapters)
close

Preface

This book is an introduction to the world of machine learning, a topic that is becoming more and more important, not only for IT professionals and analysts but also for all the data scientists and engineers who want to exploit the enormous power of techniques such as predictive analysis, classification, clustering, and natural language processing. In order to facilitate the learning process, all theoretical elements are followed by concrete examples based on Python.

A basic but solid understanding of this topic requires a foundation in mathematics, which is not only necessary to explain the algorithms, but also to let the reader understand how it's possible to tune up the hyperparameters in order to attain the best possible accuracy. Of course, it's impossible to cover all the details with the appropriate precision. For this reason, some topics are only briefly described, limiting the theory to the results without providing any of the workings. In this way, the user has the double opportunity to focus on the fundamental concepts (without too many mathematical complications) and, through the references, examine in depth all the elements that generate interest.

The chapters can be read in no particular order, skipping the topics that you already know. Whenever necessary, there are references to the chapters where some concepts are explained. I apologize in advance for any imprecision, typos or mistakes, and I'd like to thank all the Packt editors for their collaboration and constant attention.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete