Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning Algorithms
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning Algorithms

Machine Learning Algorithms

close
close
Machine Learning Algorithms

Machine Learning Algorithms

Overview of this book

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight. This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture. By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.
Table of Contents (19 chapters)
close
close

Summary

A linear model classifies samples using separating hyperplanes, so a problem is linearly separable if it's possible to find a linear model whose accuracy overcomes a predetermined threshold. Logistic regression is one of most famous linear classifiers, based on the principle of maximizing the probability of a sample belonging to the right class. SGD classifiers are a more generic family of algorithms, identified by the different loss functions that are adopted. SGD allows partial fitting, particularly when the amount of data is too large to be loaded in memory. A Perceptron is a particular instance of SGD, representing a linear neural network that cannot solve the XOR problem (for this reason, multi-layer perceptrons became the first choice for non-linear classification). However, in general, its performance is comparable to a logistic regression model.

The performances...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY