Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learn OpenCV 4 by Building Projects
  • Toc
  • feedback
Learn OpenCV 4 by Building Projects

Learn OpenCV 4 by Building Projects

By : Millán Escrivá, Vinícius G. Mendonça, Joshi
2.5 (2)
close
Learn OpenCV 4 by Building Projects

Learn OpenCV 4 by Building Projects

2.5 (2)
By: Millán Escrivá, Vinícius G. Mendonça, Joshi

Overview of this book

OpenCV is one of the best open source libraries available, and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you’re completely new to computer vision, or have a basic understanding of its concepts, Learn OpenCV 4 by Building Projects – Second edition will be your guide to understanding OpenCV concepts and algorithms through real-world examples and projects. You’ll begin with the installation of OpenCV and the basics of image processing. Then, you’ll cover user interfaces and get deeper into image processing. As you progress through the book, you'll learn complex computer vision algorithms and explore machine learning and face detection. The book then guides you in creating optical flow video analysis and background subtraction in complex scenes. In the concluding chapters, you'll also learn about text segmentation and recognition and understand the basics of the new and improved deep learning module. By the end of this book, you'll be familiar with the basics of Open CV, such as matrix operations, filters, and histograms, and you'll have mastered commonly used computer vision techniques to build OpenCV projects from scratch.
Table of Contents (14 chapters)
close

Computer vision and the machine learning workflow

Computer vision applications with machine learning have a common basic structure. This structure is divided into different steps:

  1. Pre-process
  2. Segmentation
  3. Feature extraction
  4. Classification result
  5. Post-process

These are common in almost all computer vision applications, while others are omitted. In the following diagram, you can see the different steps that are involved:

Almost all computer vision applications start with a Pre-process applied to the input image, which consists of the removal of light and noise, filtering, blurring, and so on. After applying all pre-processing required to the input image, the second step is Segmentation. In this step, we have to extract the regions of interest in the image and isolate each one as a unique object of interest. For example, in a face detection system, we have to separate the faces...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete