Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learn OpenCV 4 by Building Projects
  • Toc
  • feedback
Learn OpenCV 4 by Building Projects

Learn OpenCV 4 by Building Projects

By : Millán Escrivá, Vinícius G. Mendonça, Joshi
2.5 (2)
close
Learn OpenCV 4 by Building Projects

Learn OpenCV 4 by Building Projects

2.5 (2)
By: Millán Escrivá, Vinícius G. Mendonça, Joshi

Overview of this book

OpenCV is one of the best open source libraries available, and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you’re completely new to computer vision, or have a basic understanding of its concepts, Learn OpenCV 4 by Building Projects – Second edition will be your guide to understanding OpenCV concepts and algorithms through real-world examples and projects. You’ll begin with the installation of OpenCV and the basics of image processing. Then, you’ll cover user interfaces and get deeper into image processing. As you progress through the book, you'll learn complex computer vision algorithms and explore machine learning and face detection. The book then guides you in creating optical flow video analysis and background subtraction in complex scenes. In the concluding chapters, you'll also learn about text segmentation and recognition and understand the basics of the new and improved deep learning module. By the end of this book, you'll be familiar with the basics of Open CV, such as matrix operations, filters, and histograms, and you'll have mastered commonly used computer vision techniques to build OpenCV projects from scratch.
Table of Contents (14 chapters)
close

Drawing a histogram

A histogram is a statistical graphic representation of variable distribution that allows us to understand the density estimation and probability distribution of data. A histogram is created by dividing the entire range of variable values into a small range of values, and then counting how many values fall into each interval.

If we apply this histogram concept to an image, it seems to be difficult to understand but, in fact, it is very simple. In a gray image, our variable values' ranges are each possible gray value (from 0 to 255), and the density is the number of pixels of the image that have this value. This means that we have to count the number of pixels of the image that have a value of 0, the number of pixels with a value of 1, and so on.

The callback function that shows the histogram of the input image is showHistoCallback ; this function calculates...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete