Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Neural Network Projects with Python
  • Toc
  • feedback
Neural Network Projects with Python

Neural Network Projects with Python

By : James Loy
4.6 (15)
close
Neural Network Projects with Python

Neural Network Projects with Python

4.6 (15)
By: James Loy

Overview of this book

Neural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them. It contains practical demonstrations of neural networks in domains such as fare prediction, image classification, sentiment analysis, and more. In each case, the book provides a problem statement, the specific neural network architecture required to tackle that problem, the reasoning behind the algorithm used, and the associated Python code to implement the solution from scratch. In the process, you will gain hands-on experience with using popular Python libraries such as Keras to build and train your own neural networks from scratch. By the end of this book, you will have mastered the different neural network architectures and created cutting-edge AI projects in Python that will immediately strengthen your machine learning portfolio.
Table of Contents (10 chapters)
close

Analyzing the results

Let's plot the validation accuracy per epoch for the three different models. First, we plot for the model trained using the sgd optimizer:

from matplotlib import pyplot as plt

plt.plot(range(1,11), SGD_score.history['acc'], label='Training Accuracy')
plt.plot(range(1,11), SGD_score.history['val_acc'],
label='Validation Accuracy')
plt.axis([1, 10, 0, 1])
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Train and Validation Accuracy using SGD Optimizer')
plt.legend()
plt.show()

We get the following output:

Did you notice anything wrong? The training and validation accuracy is stuck at 50%! Essentially, this shows that the training has failed and our neural network performs no better than a random coin toss for this binary classification task. Clearly, the sgd optimizer is not...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete