Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Generative Adversarial Networks Projects
  • Table Of Contents Toc
  • Feedback & Rating feedback
Generative Adversarial Networks Projects

Generative Adversarial Networks Projects

By : Ahirwar
2.3 (3)
close
close
Generative Adversarial Networks Projects

Generative Adversarial Networks Projects

2.3 (3)
By: Ahirwar

Overview of this book

Generative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain. Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you’ll gain an understanding of the architecture and functioning of generative models through their practical implementation. By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects.
Table of Contents (11 chapters)
close
close

Training the pix2pix network

Like any other GAN, training the pix2pix network is a two-step process. In the first step, we train the discriminator network. In the second step, we train the adversarial network, which eventually trains the generator network. Let's start training the network.

Perform the following steps to train an SRGAN network:

  1. Start by defining the hyperparameters that are required for training:
epochs = 500
num_images_per_epoch = 400
batch_size = 1
img_width = 256
img_height = 256
num_channels = 1
input_img_dim = (256, 256, 1)
patch_dim = (256, 256)

# Specify dataset directory path
dataset_dir = "pix2pix-keras/pix2pix/data/facades_bw"
  1. Next, define the common optimizer, shown as follows:
common_optimizer = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999,  
epsilon=1e-08)

For all networks, we will use the Adam optimizer with the learning...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY