Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning Data Mining with Python
  • Toc
  • feedback
Learning Data Mining with Python

Learning Data Mining with Python

By : Robert Layton
close
Learning Data Mining with Python

Learning Data Mining with Python

By: Robert Layton

Overview of this book

This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations.
Table of Contents (14 chapters)
close

Getting useful features from models


One question you may ask is, what are the best features for determining if a tweet is relevant or not? We can extract this information from our Naive Bayes model and find out which features are the best individually, according to Naive Bayes.

First, we fit a new model. While the cross_val_score gives us a score across different folds of cross-validated testing data, it doesn't easily give us the trained models themselves. To do this, we simply fit our pipeline with the tweets, creating a new model. The code is as follows:

 model = pipeline.fit(tweets, labels)

Note

Note that we aren't really evaluating the model here, so we don't need to be as careful with the training/testing split. However, before you put these features into practice, you should evaluate on a separate test split. We skip over that here for the sake of clarity.

A pipeline gives you access to the individual steps through the named_steps attribute and the name of the step (we defined these names...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete