Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning Data Mining with Python
  • Toc
  • feedback
Learning Data Mining with Python

Learning Data Mining with Python

By : Robert Layton
close
Learning Data Mining with Python

Learning Data Mining with Python

By: Robert Layton

Overview of this book

This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations.
Table of Contents (14 chapters)
close

Summary


In this chapter, we looked at clustering, which is an unsupervised learning approach. We use unsupervised learning to explore data, rather than for classification and prediction purposes. In the experiment here, we didn't have topics for the news items we found on reddit, so we were unable to perform classification. We used k-means clustering to group together these news stories to find common topics and trends in the data.

In pulling data from reddit, we had to extract data from arbitrary websites. This was performed by looking for large text segments, rather than a full-blown machine learning approach. There are some interesting approaches to machine learning for this task that may improve upon these results. In the Appendix of this book, I've listed, for each chapter, avenues for going beyond the scope of the chapter and improving upon the results. This includes references to other sources of information and more difficult applications of the approaches in each chapter.

We also...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete