Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning Data Mining with Python
  • Toc
  • feedback
Learning Data Mining with Python

Learning Data Mining with Python

By : Robert Layton
close
Learning Data Mining with Python

Learning Data Mining with Python

By: Robert Layton

Overview of this book

This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations.
Table of Contents (14 chapters)
close

Clustering ensembles


In Chapter 3, Predicting Sports Winners with Decision Trees, we looked at a classification ensemble using the random forest algorithm, which is an ensemble of many low-quality, tree-based classifiers. Ensembling can also be performed using clustering algorithms. One of the key reasons for doing this is to smooth the results from many runs of an algorithm. As we saw before, the results from running k-means are varied, depending on the selection of the initial centroids. Variation can be reduced by running the algorithm many times and then combining the results.

Note

Ensembling also reduces the effects of choosing parameters on the final result. Most clustering algorithms are quite sensitive to the parameter values chosen for the algorithm. Choosing slightly different parameters results in different clusters.

Evidence accumulation

As a basic ensemble, we can first cluster the data many times and record the labels from each run. We then record how many times each pair of samples...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete