Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning PySpark
  • Toc
  • feedback
Learning PySpark

Learning PySpark

By : Drabas, Lee
3.9 (194)
close
Learning PySpark

Learning PySpark

3.9 (194)
By: Drabas, Lee

Overview of this book

Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark. You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications.
Table of Contents (13 chapters)
close
12
Index

Data operations

We have already presented some of the most common methods you will use with DataShapes (for example, .peek()), and ways to filter the data based on the column value. Blaze has implemented many methods that make working with any data extremely easy.

In this section, we will review a host of other commonly used ways of working with data and methods associated with them. For those of you coming from pandas and/or SQL, we will provide a respective syntax where equivalents exist.

Accessing columns

There are two ways of accessing columns: you can get a single column at a time by accessing them as if they were a DataShape attribute:

traffic.Year.head(2)

The preceding script produces the following output:

Accessing columns

You can also use indexing that allows the selection of more than one column at a time:

(traffic[['Location', 'Year', 'Accident', 'Fatal', 'Alcohol']]
    .head(2))

This generates the following output:

Accessing columns

The preceding syntax would be the same...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete