Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning PySpark
  • Table Of Contents Toc
  • Feedback & Rating feedback
Learning PySpark

Learning PySpark

By : Drabas, Lee
3.9 (194)
close
close
Learning PySpark

Learning PySpark

3.9 (194)
By: Drabas, Lee

Overview of this book

Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark. You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications.
Table of Contents (13 chapters)
close
close
12
Index

Introducing TensorFrames


At the time of writing, TensorFrames is an experimental binding for Apache Spark; it was introduced in early 2016, shortly after the release of TensorFlow. With TensorFrames, one can manipulate Spark DataFrames with TensorFlow programs. Referring to the tensor diagrams in the previous section, we have updated the figure to show how Spark DataFrames work with TensorFlow, as shown in the following diagram:

As noted in the preceding diagram, TensorFrames provides a bridge between Spark DataFrames and TensorFlow. This allows you to take your DataFrames and apply them as input into your TensorFlow computation graph. TensorFrames also allows you to take the TensorFlow computation graph output and push it back into DataFrames so you can continue your downstream Spark processing.

In terms of common usage scenarios for TensorFrames, these typically include the following:

Utilize TensorFlow with your data

The integration of TensorFlow and Apache Spark with TensorFrames allows...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY