Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Effective Amazon Machine Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Effective Amazon Machine Learning

Effective Amazon Machine Learning

By : Perrier
close
close
Effective Amazon Machine Learning

Effective Amazon Machine Learning

By: Perrier

Overview of this book

Predictive analytics is a complex domain requiring coding skills, an understanding of the mathematical concepts underpinning machine learning algorithms, and the ability to create compelling data visualizations. Following AWS simplifying Machine learning, this book will help you bring predictive analytics projects to fruition in three easy steps: data preparation, model tuning, and model selection. This book will introduce you to the Amazon Machine Learning platform and will implement core data science concepts such as classification, regression, regularization, overfitting, model selection, and evaluation. Furthermore, you will learn to leverage the Amazon Web Service (AWS) ecosystem for extended access to data sources, implement realtime predictions, and run Amazon Machine Learning projects via the command line and the Python SDK. Towards the end of the book, you will also learn how to apply these services to other problems, such as text mining, and to more complex datasets.
Table of Contents (10 chapters)
close
close

Summary

In this chapter, we have moved away from the Amazon ML web interface and learned how to work with the service through the AWS CLI and the Python SDK. The commands and methods for both types of interaction are very similar. The functions and commands perform a standard set of operations from creation to deletion of Amazon ML objects: datasources, models, evaluation, and batch predictions. The fact that Amazon ML chains the sequence of dependent object creation allows you to create all the objects at once without having to wait for one upstream to finish (datasource or model) before creating the downstream one (model or evaluation). The waiter methods make it possible to wait for all evaluations to be completed before retrieving the results and making the necessary object deletion. 

We showed how scripting Amazon ML allowed us to implement Machine Learning methods such as cross-validation and Recursive...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY