Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying R Machine Learning By Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
R Machine Learning By Example

R Machine Learning By Example

By : Raghav Bali
4.6 (14)
close
close
R Machine Learning By Example

R Machine Learning By Example

4.6 (14)
By: Raghav Bali

Overview of this book

Data science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems. This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems. You’ll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms. Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R.
Table of Contents (10 chapters)
close
close
9
Index

What this book covers

Chapter 1, Getting Started with R and Machine Learning, acquaints you with the book and helps you reacquaint yourself with R and its basics. This chapter also provides you with a short introduction to machine learning.

Chapter 2, Let's Help Machines Learn, dives into machine learning by explaining the concepts that form its base. You are also presented with various types of learning algorithms, along with some real-world examples.

Chapter 3, Predicting Customer Shopping Trends with Market Basket Analysis, starts off with our first project, e-commerce product recommendations, predictions, and pattern analysis, using various machine learning techniques. This chapter specifically deals with market basket analysis and association rule mining to detect customer shopping patterns and trends and make product predictions and suggestions using these techniques. These techniques are used widely by retail companies and e-commerce stores such as Target, Macy's, Flipkart, and Amazon for product recommendations.

Chapter 4, Building a Product Recommendation System, covers the second part of our first project on e-commerce product recommendations, predictions, and pattern analysis. This chapter specifically deals with analyzing e-commerce product reviews and ratings by different users, using algorithms and techniques such as user-collaborative filtering to design a recommender system that is production ready.

Chapter 5, Credit Risk Detection and Prediction – Descriptive Analytics, starts off with our second project, applying machine learning to a complex financial scenario where we deal with credit risk detection and prediction. This chapter specifically deals with introducing the main objective, looking at a financial credit dataset for 1,000 people who have applied for loans from a bank. We will use machine learning techniques to detect people who are potential credit risks and may not be able to repay a loan if they take it from the bank, and also predict the same for the future. The chapter will also talk in detail about our dataset, the main challenges when dealing with data, the main features of the dataset, and exploratory and descriptive analytics on the data. It will conclude with the best machine learning techniques suitable for tackling this problem.

Chapter 6, Credit Risk Detection and Prediction – Predictive Analytics, starts from where we left off in the previous chapter about descriptive analytics with looking at using predictive analytics. Here, we specifically deal with using several machine learning algorithms to detect and predict which customers would be potential credit risks and might not be likely to repay a loan to the bank if they take it. This would ultimately help the bank make data-driven decisions as to whether to approve the loan or not. We will be covering several supervised learning algorithms and compare their performance. Different metrics for evaluating the efficiency and accuracy of various machine learning algorithms will also be covered here.

Chapter 7, Social Media Analysis – Analyzing Twitter Data, introduces the world of social media analytics. We begin with an introduction to the world of social media and the process of collecting data through Twitter's APIs. The chapter will walk you through the process of mining useful information from tweets, including visualizing Twitter data with real-world examples, clustering and topic modeling of tweets, the present challenges and complexities, and strategies to address these issues. We show by example how some powerful measures can be computed using Twitter data.

Chapter 8, Sentiment Analysis of Twitter Data, builds upon the knowledge of Twitter APIs to work on a project for analyzing sentiments in tweets. This project presents multiple machine learning algorithms for the classification of tweets based on the sentiments inferred. This chapter will also present these results in a comparative manner and help you understand the workings and difference in results of these algorithms.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY