Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying R Machine Learning By Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
R Machine Learning By Example

R Machine Learning By Example

By : Raghav Bali
4.6 (14)
close
close
R Machine Learning By Example

R Machine Learning By Example

4.6 (14)
By: Raghav Bali

Overview of this book

Data science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems. This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems. You’ll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms. Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R.
Table of Contents (10 chapters)
close
close
9
Index

Modeling using decision trees


Decision trees are algorithms which again belong to the supervised machine learning algorithms family. They are also used for both classification and regression, often called CART, which stands for classification and regression trees. These are used a lot in decision support systems, business intelligence, and operations research.

Decision trees are mainly used for making decisions that would be most useful in reaching some objective and designing a strategy based on these decisions. At the core, a decision tree is just a flowchart with several nodes and conditional edges. Each non-leaf node represents a conditional test on one of the features and each edge represents an outcome of the test. Each leaf node represents a class label where predictions are made for the final outcome. Paths from the root to all the leaf nodes give us all the classification rules. Decision trees are easy to represent, construct, and understand. However, the drawback is that they are...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY