Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying R Machine Learning By Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
R Machine Learning By Example

R Machine Learning By Example

By : Raghav Bali
4.6 (14)
close
close
R Machine Learning By Example

R Machine Learning By Example

4.6 (14)
By: Raghav Bali

Overview of this book

Data science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems. This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems. You’ll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms. Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R.
Table of Contents (10 chapters)
close
close
9
Index

Summary

Twitter is a goldmine for data science, with interesting patterns and insights spread all across it. Its constant flow of user-generated content, coupled with unique, interest-based relationships, present opportunities to understand human dynamics up close. Sentiments Analysis is one such field where Twitter provides the right set of ingredients to understand what and how we present and share opinions about products, brands, people, and so on.

Throughout this chapter, we have looked at the basics of Sentiment Analysis, key terms, and areas of application. We have also looked into the various challenges posed while performing sentiment analysis. We have looked at various commonly-used feature extraction methods such as tf-idf, Ngrams, POS, negation, and so on for performing sentiment analysis (or textual analysis in general). We have built on our code base from the previous chapter to streamline and structure utility functions for reuse. We have performed polarity analysis using Twitter...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY