Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • HBase High Performance Cookbook
  • Toc
  • feedback
HBase High Performance Cookbook

HBase High Performance Cookbook

By : Ruchir Choudhry
2.5 (2)
close
HBase High Performance Cookbook

HBase High Performance Cookbook

2.5 (2)
By: Ruchir Choudhry

Overview of this book

Apache HBase is a non-relational NoSQL database management system that runs on top of HDFS. It is an open source, disturbed, versioned, column-oriented store and is written in Java to provide random real-time access to big Data. We’ll start off by ensuring you have a solid understanding the basics of HBase, followed by giving you a thorough explanation of architecting a HBase cluster as per our project specifications. Next, we will explore the scalable structure of tables and we will be able to communicate with the HBase client. After this, we’ll show you the intricacies of MapReduce and the art of performance tuning with HBase. Following this, we’ll explain the concepts pertaining to scaling with HBase. Finally, you will get an understanding of how to integrate HBase with other tools such as ElasticSearch. By the end of this book, you will have learned enough to exploit HBase for boost system performance.
Table of Contents (13 chapters)
close
7
7. Large-Scale MapReduce
12
Index

Introduction

HBase is inspired by the Google big table architecture, and is fundamentally a non-relational, open source, and column-oriented distributed NoSQL. Written in Java, it is designed and developed by many engineers under the framework of Apache Software Foundation. Architecturally it sits on Apache Hadoop and runs by using Hadoop Distributed File System (HDFS) as its foundation.

It is a column-oriented database, empowered by a fault-tolerant distributed file structure known as HDFS. In addition to this, it also provides very advanced features, such as auto sharding, load-balancing, in-memory caching, replication, compression, near real-time lookups, strong consistency (using multi-version). It uses the latest concepts of block cache and bloom filter to provide faster response to online/real-time request. It supports multiple clients running on heterogeneous platforms by providing user-friendly APIs.

In this chapter, we will discuss how to effectively set up mid and large size HBase cluster on top of Hadoop/HDFS framework.

This chapter will help you set up HBase on a fully distributed cluster. For cluster setup, we will consider REH (RedHat Enterprise-6.2 Linux 64 bit); for our setup we will be using six nodes.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete