Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning Shiny
  • Toc
  • feedback
Learning Shiny

Learning Shiny

By : Hernan Resnizky
2.9 (7)
close
Learning Shiny

Learning Shiny

2.9 (7)
By: Hernan Resnizky

Overview of this book

Make the most of R’s dynamic capabilities and implement web applications with Shiny About This Book Present interactive data visualizations in R within the Shiny framework Construct web dashboards in a simple, intuitive, but fully flexible environment Apply your skills to create a real-world web application with this step-by-step guide Who This Book Is For If you are a data scientist who needs a platform to show your results to a broader audience in an attractive and visual way, or a web developer with no prior experience in R or Shiny, this is the book for you. What You Will Learn Comprehend many useful functions, such as lapply and apply, to process data in R Write and structure different files to create a basic dashboard Develop graphics in R using popular graphical libraries such as ggplot2 and GoogleVis Mount a dashboard on a Linux Server Integrate Shiny with non-R-native visualization, such as D3.js Design and build a web application In Detail R is nowadays one of the most used tools in data science. However, along with Shiny, it is also gaining territory in the web application world, due to its simplicity and flexibility. Shiny is a framework that enables the creation of interactive visualizations written entirely in R and can be displayed in almost any ordinary web browser. It is a package from RStudio, which is an IDE for R. From the fundamentals of R to the administration of multi-concurrent, fully customized web applications, this book explains how to achieve your desired web application in an easy and gradual way. You will start by learning about the fundamentals of R, and will move on to looking at simple and practical examples. These examples will enable you to grasp many useful tools that will assist you in solving the usual problems that can be faced when developing data visualizations. You will then walk through the integration of Shiny with R in general and view the different visualization possibilities out there. Finally, you will put your skills to the test and create your first web application! Style and approach This is a comprehensive, step-by-step guide that will allow you to learn and make full use of R and Shiny’s capabilities in a gradual way, together with clear, applied examples.
Table of Contents (13 chapters)
close
Free Chapter
1
1. Introducing R, RStudio, and Shiny
chevron up
12
Index

About Shiny

Shiny is a package created by RStudio, which enables to easily interface R with a web browser. As stated in its official documentation, Shiny is a web application framework for R that makes it incredibly easy to build interactive web applications with R.

One of its main advantages is that there is no need to combine R code with HTML/JavaScript code as the framework already contains prebuilt features that cover the most commonly used functionalities in a web interactive application. There is a wide range of software that has web application functionalities, especially oriented to interactive data visualization. What are the advantages of using R/Shiny then, you ask? They are as follows:

  • It is free not only in terms of money but (as with all GNU projects) in terms of freedom. As stated in the GNU main page: To understand the concept, you should think of "free" as in "free speech", not as in "free beer". Free software is a matter of the users' freedom to run, copy, distribute, study, change, and improve the software.
  • All the possibilities of a powerful language such as R is available. Thanks to its contributive essence, you can develop a web application that can display any R-generated output. This means that you can, for instance, run complex statistical models and return the output in a friendly way in the browser, obtain and integrate data from the various sources and formats (for instance, SQL, XML, JSON, and so on) the way you need, and subset, process, and dynamically aggregate the data the way you want. These options are not available (or are much more difficult to accomplish) under most of the commercial BI tools.

Installing and loading Shiny

As with any other package available in the CRAN repositories, the easiest way to install Shiny is by executing install.packages("shiny").

The following output should appear on the console:

Installing and loading Shiny

Due to R's extensibility, many of its packages use elements (mostly functions) from other packages. For this reason, these packages are loaded or installed when the package that is dependent on them is loaded or installed. This is called dependency. Shiny (on its 0.10.2.1 version) depends on Rcpp, httpuv, mime, htmltools, and R6.

An R session is started only with the minimal packages loaded. So if functions from other packages are used, they need to be loaded before using them. The corresponding command for this is as follows:

library(shiny)

When installing a package, the package name must be quoted but when loading the package, it must be unquoted.

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete