Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Matplotlib 3.0 Cookbook
  • Toc
  • feedback
Matplotlib 3.0 Cookbook

Matplotlib 3.0 Cookbook

By : Poladi, Borkar
3 (5)
close
Matplotlib 3.0 Cookbook

Matplotlib 3.0 Cookbook

3 (5)
By: Poladi, Borkar

Overview of this book

Matplotlib provides a large library of customizable plots, along with a comprehensive set of backends. Matplotlib 3.0 Cookbook is your hands-on guide to exploring the world of Matplotlib, and covers the most effective plotting packages for Python 3.7. With the help of this cookbook, you'll be able to tackle any problem you might come across while designing attractive, insightful data visualizations. With the help of over 150 recipes, you'll learn how to develop plots related to business intelligence, data science, and engineering disciplines with highly detailed visualizations. Once you've familiarized yourself with the fundamentals, you'll move on to developing professional dashboards with a wide variety of graphs and sophisticated grid layouts in 2D and 3D. You'll annotate and add rich text to the plots, enabling the creation of a business storyline. In addition to this, you'll learn how to save figures and animations in various formats for downstream deployment, followed by extending the functionality offered by various internal and third-party toolkits, such as axisartist, axes_grid, Cartopy, and Seaborn. By the end of this book, you'll be able to create high-quality customized plots and deploy them on the web and on supported GUI applications such as Tkinter, Qt 5, and wxPython by implementing real-world use cases and examples.
Table of Contents (17 chapters)
close

Avoiding truncation while saving the figure

When you save the figure with all the default options, sometimes it may get truncated. In this recipe, we will learn how to avoid such issues.

Getting ready

Import the required libraries:

import matplotlib.pyplot as plt
import numpy as np

How to do it...

The following code block plots a histogram and saves it with the default parameters, using the bbox_inches='tight' parameter, followed by the addition of pad_inches=1:

  1. Set the seed for repeatability and define the figure with figsize:
np.random.seed(19681211)
plt.figure...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete