Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Matplotlib 3.0 Cookbook
  • Toc
  • feedback
Matplotlib 3.0 Cookbook

Matplotlib 3.0 Cookbook

By : Poladi, Borkar
3 (5)
close
Matplotlib 3.0 Cookbook

Matplotlib 3.0 Cookbook

3 (5)
By: Poladi, Borkar

Overview of this book

Matplotlib provides a large library of customizable plots, along with a comprehensive set of backends. Matplotlib 3.0 Cookbook is your hands-on guide to exploring the world of Matplotlib, and covers the most effective plotting packages for Python 3.7. With the help of this cookbook, you'll be able to tackle any problem you might come across while designing attractive, insightful data visualizations. With the help of over 150 recipes, you'll learn how to develop plots related to business intelligence, data science, and engineering disciplines with highly detailed visualizations. Once you've familiarized yourself with the fundamentals, you'll move on to developing professional dashboards with a wide variety of graphs and sophisticated grid layouts in 2D and 3D. You'll annotate and add rich text to the plots, enabling the creation of a business storyline. In addition to this, you'll learn how to save figures and animations in various formats for downstream deployment, followed by extending the functionality offered by various internal and third-party toolkits, such as axisartist, axes_grid, Cartopy, and Seaborn. By the end of this book, you'll be able to create high-quality customized plots and deploy them on the web and on supported GUI applications such as Tkinter, Qt 5, and wxPython by implementing real-world use cases and examples.
Table of Contents (17 chapters)
close

Bar plot

In this recipe, we will learn how to plot a bar graph in 3D. We will use the battery sales data that we used for table plotting in Chapter 2, Getting Started with Basic Plots. Here, we will only plot a bar chart, not the table chart, below the bar graph.

Getting ready

Import the required libraries:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

How to do it...

The following are the steps to implement the logic:

  1. Define the figure and axes for 3D plotting:
fig = plt.figure(figsize=(10,6))
ax = fig.add_subplot(111, projection...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete