Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning Geospatial Analysis with Python
  • Toc
  • feedback
Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python

By : Joel Lawhead
4.1 (8)
close
Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python

4.1 (8)
By: Joel Lawhead

Overview of this book

Geospatial analysis is used in almost every field you can think of from medicine, to defense, to farming. It is an approach to use statistical analysis and other informational engineering to data which has a geographical or geospatial aspect. And this typically involves applications capable of geospatial display and processing to get a compiled and useful data. "Learning Geospatial Analysis with Python" uses the expressive and powerful Python programming language to guide you through geographic information systems, remote sensing, topography, and more. It explains how to use a framework in order to approach Geospatial analysis effectively, but on your own terms. "Learning Geospatial Analysis with Python" starts with a background of the field, a survey of the techniques and technology used, and then splits the field into its component speciality areas: GIS, remote sensing, elevation data, advanced modelling, and real-time data. This book will teach you everything there is to know, from using a particular software package or API to using generic algorithms that can be applied to Geospatial analysis. This book focuses on pure Python whenever possible to minimize compiling platform-dependent binaries, so that you don't become bogged down in just getting ready to do analysis. "Learning Geospatial Analysis with Python" will round out your technical library with handy recipes and a good understanding of a field that supplements many a modern day human endeavors.
Table of Contents (12 chapters)
close
11
Index

What this book covers

Chapter 1, Learning Geospatial Analysis with Python, introduces geospatial analysis as a way of answering questions about our world. The differences between GIS and remote sensing are explained. Common geospatial analysis processes are illustrated and a code for a simple geographic information system in Python is introduced.

Chapter 2, Geospatial Data, discusses geospatial data, and explains the forms geospatial data comes in. The most challenging part of geospatial analysis is acquiring the data you need and preparing it for analysis. This chapter explains the two major categories of data as well as several newer formats that are becoming more and more common. Familiarity with these data types is essential to understand geospatial analysis.

Chapter 3, The Geospatial Technology Landscape, covers the geospatial technology ecosystem that consists of thousands of software libraries and packages. This vast array of choices is overwhelming for newcomers to geospatial analysis. The secret to learning geospatial analysis quickly is to understand the handful of libraries and packages that really matter. Most other software is derived from these critical packages. Understanding the hierarchy of geospatial software and how it's used allows you to quickly comprehend and evaluate any geospatial tool.

Chapter 4, Geospatial Python Toolbox, explains the software and libraries introduced which forms the basis of the book and are used throughout. In this chapter, Python's role within the geospatial industry is elaborated: GIS scripting language, mash-up glue language, and full-blown programming language. Code examples are used to teach data editing concepts, and many of the basic geospatial concepts in Chapter 1, Learning Geospatial Analysis with Python, are also demonstrated in Python.

Chapter 5, Python and Geographic Information Systems, teaches the simple yet practical python GIS geospatial products using processes which can be applied to a variety of problems.

Chapter 6, Python and Remote Sensing, shows readers how to work with remote sensing geospatial data. Remote sensing includes some of the most complex and least documented geospatial operations. This chapter will build a solid core for the reader and demystify remote sensing using Python.

Chapter 7, Python and Elevation Data, demonstrates the most common uses of elevation data, which can be contained in almost any geospatial format but is used quite differently from other types of geospatial data, and will show you how to work with its unique properties.

Chapter 8, Advanced Geospatial Python Modeling, discusses how geospatial data editing and processing help us understand the world as it is. But the true power of geospatial analysis is modeling. Geospatial models help us predict the future, narrow vast fields of choices down to the best options, and visualize concepts which cannot be directly observed in the natural world. This chapter uses Python to teach the reader the true power of geospatial technology.

Chapter 9, Real-Time Data, introduces real-time data and examines a modern phenomenon. A wise geospatial analyst once said, "As soon as a map is created it is obsolete." Until recently, by the time you collected data about the earth, processed it, and created a geospatial product, the world it represented had already changed. But modern geospatial data shatters this notion. Data sets are available over the Internet which are up to the minute or even the second. These data sets fundamentally change the way we perform geospatial analysis.

Chapter 10, Putting It All Together, combines the skills from previous chapters step-by-step to build a simple, automated geospatial analysis system which produces a report.

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete