Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learning Geospatial Analysis with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python

By : Joel Lawhead
4.1 (8)
close
close
Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python

4.1 (8)
By: Joel Lawhead

Overview of this book

Geospatial analysis is used in almost every field you can think of from medicine, to defense, to farming. It is an approach to use statistical analysis and other informational engineering to data which has a geographical or geospatial aspect. And this typically involves applications capable of geospatial display and processing to get a compiled and useful data. "Learning Geospatial Analysis with Python" uses the expressive and powerful Python programming language to guide you through geographic information systems, remote sensing, topography, and more. It explains how to use a framework in order to approach Geospatial analysis effectively, but on your own terms. "Learning Geospatial Analysis with Python" starts with a background of the field, a survey of the techniques and technology used, and then splits the field into its component speciality areas: GIS, remote sensing, elevation data, advanced modelling, and real-time data. This book will teach you everything there is to know, from using a particular software package or API to using generic algorithms that can be applied to Geospatial analysis. This book focuses on pure Python whenever possible to minimize compiling platform-dependent binaries, so that you don't become bogged down in just getting ready to do analysis. "Learning Geospatial Analysis with Python" will round out your technical library with handy recipes and a good understanding of a field that supplements many a modern day human endeavors.
Table of Contents (12 chapters)
close
close
11
Index

Chapter 6. Python and Remote Sensing

In this chapter, we will discuss Remote Sensing. This field grows more exciting every day as more satellites are launched and the distribution of data becomes easier. The high availability of satellite and aerial images, as well as interesting new types of sensors launching each year is changing the role remote sensing plays in understanding our world.

And in this field, Python is quite capable. However, in this chapter we will rely more on Python bindings to C libraries than we have in the previous chapters, where the focus was more on using pure Python. The only reason for this change is the size and complexity of remotely sensed data. In remote sensing, we step through each pixel in an image and perform some form of query or mathematical process. An image can be thought of as a large numerical array. And in remote sensing these arrays can be quite large on the order of tens of megabytes to several gigabytes. While Python is fast, only C...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY