Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Neuroevolution with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Neuroevolution with Python

Hands-On Neuroevolution with Python

By : Omelianenko
3 (1)
close
close
Hands-On Neuroevolution with Python

Hands-On Neuroevolution with Python

3 (1)
By: Omelianenko

Overview of this book

Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments.
Table of Contents (18 chapters)
close
close
Free Chapter
1
Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods
4
Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems
9
Section 3: Advanced Neuroevolution Methods
14
Section 4: Discussion and Concluding Remarks

Summary

In this chapter, we began by discussing the different methods that are used to train artificial neural networks. We considered how traditional gradient descent-based methods differ from neuroevolution-based ones. Then, we presented one of the most popular neuroevolution algorithms (NEAT) and the two ways we can extend it (HyperNEAT and ES-HyperNEAT). Finally, we described the search optimization method (Novelty Search), which can find solutions to a variety of deceptive problems that cannot be solved by conventional objective-based search methods. Now, you are ready to put this knowledge into practice after setting up the necessary environment, which we will discuss in the next chapter.

In the next chapter, we will cover the libraries that are available so that we can experiment with neuroevolution in Python. We will also demonstrate how to set up a working environment...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY