Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Deep Learning for Beginners
  • Toc
  • feedback
Deep Learning for Beginners

Deep Learning for Beginners

By : Pablo Rivas, Rivas
4.3 (3)
close
Deep Learning for Beginners

Deep Learning for Beginners

4.3 (3)
By: Pablo Rivas, Rivas

Overview of this book

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.
Table of Contents (20 chapters)
close
1
Section 1: Getting Up to Speed
8
Section 2: Unsupervised Deep Learning
13
Section 3: Supervised Deep Learning

The perceptron model

Back in Chapter 1, Introduction to Machine Learning, we briefly introduced the basic model of a neuron and the perceptron learning algorithm (PLA). Here, in this chapter, we will now revisit and expand the concept and show how that is coded in Python. We will begin with the basic definition.

The visual concept

The perceptron is an analogy of a human-inspired information processing unit, originally conceived by F. Rosenblatt and depicted in Figure 5.1 (Rosenblatt, F. (1958)). In the model, the input is represented with the vector , the activation of the neuron is given by the function , and the output is . The parameters of the neuron are and :

Figure 5.1 – The basic model of a perceptron

The trainable parameters of a perceptron are , and they are unknown. Thus, we can use input training data to determine these parameters using the PLA. From Figure 5.1, multiplies , then multiplies , and is multiplied by 1; all these products are added and then passed...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete