Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Deep Learning for Beginners
  • Toc
  • feedback
Deep Learning for Beginners

Deep Learning for Beginners

By : Pablo Rivas, Rivas
4.3 (3)
close
Deep Learning for Beginners

Deep Learning for Beginners

4.3 (3)
By: Pablo Rivas, Rivas

Overview of this book

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.
Table of Contents (20 chapters)
close
1
Section 1: Getting Up to Speed
8
Section 2: Unsupervised Deep Learning
13
Section 3: Supervised Deep Learning

Real-valued data and univariate regression

Knowing how to deal with categorical data is very important when using classification models based on deep learning; however, knowing how to prepare data for regression is as important. Data that contains continuous-like real values, such as temperature, prices, weight, speed, and others, is suitable for regression; that is, if we have a dataset with columns of different types of values, and one of those is real-valued data, we could perform regression on that column. This implies that we could use all the rest of the dataset to predict the values on that column. This is known as univariate regression, or regression on one variable.

Most machine learning methodologies work better if the data for regression is normalized. By that, we mean that the data will have special statistical properties that will make calculations more stable. This is critical for many deep learning algorithms that suffer from vanishing or exploding gradients (Hanin, B....

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete