Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • RAG-Driven Generative AI
  • Toc
  • feedback
RAG-Driven Generative AI

RAG-Driven Generative AI

By : Denis Rothman
4.3 (18)
close
RAG-Driven Generative AI

RAG-Driven Generative AI

4.3 (18)
By: Denis Rothman

Overview of this book

RAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs. This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs. You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.
Table of Contents (14 chapters)
close
11
Other Books You May Enjoy
12
Index
Appendix

Summary

RAG for generative AI relies on two main components: a retriever and a generator. The retriever processes data and defines a search method, such as fetching labeled documents with keywords—the generator’s input, an LLM, benefits from augmented information when producing sequences. We went through the three main configurations of the RAG framework: naïve RAG, which accesses datasets through keywords and other entry-level search methods; advanced RAG, which introduces embeddings and indexes to improve the search methods; and modular RAG, which can combine naïve and advanced RAG as well as other ML methods.

The RAG framework relies on datasets that can contain dynamic data. A generative AI model relies on parametric data through its weights. These two approaches are not mutually exclusive. If the RAG datasets become too cumbersome, fine-tuning can prove useful. When fine-tuned models cannot respond to everyday information, RAG can come in handy. RAG frameworks also rely heavily on the ecosystem that provides the critical functionality to make the systems work. We went through the main components of the RAG ecosystem, from the retriever to the generator, for which the trainer is necessary, and the evaluator. Finally, we built an entry-level naïve, advanced, and modular RAG program in Python, leveraging keyword matching, vector search, and index-based retrieval, augmenting the input of GPT-4o.

Our next step in Chapter 2, RAG Embedding Vector Stores with Deep Lake and OpenAI, is to embed data in vectors. We will store the vectors in vector stores to enhance the speed and precision of the retrieval functions of a RAG ecosystem.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete